
Phase diagram of the asymmetric tetrahedral Ising–Heisenberg chain

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 345208

(http://iopscience.iop.org/0953-8984/20/34/345208)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 13:56

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/34
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 345208 (10pp) doi:10.1088/0953-8984/20/34/345208

Phase diagram of the asymmetric
tetrahedral Ising–Heisenberg chain
J S Valverde, Onofre Rojas and S M de Souza

Departamento de Ciências Exatas, Universidade Federal de Lavras, Caixa Postal 3037,
CEP 37200-000, Lavras, MG, Brazil

Received 29 April 2008, in final form 18 June 2008
Published 1 August 2008
Online at stacks.iop.org/JPhysCM/20/345208

Abstract
The asymmetric tetrahedron is composed of all edges of a tetrahedron represented by Ising
interactions except for one, which has a Heisenberg-type interaction. This asymmetric
tetrahedron is arranged by connecting a vertex whose edges are only Ising-type interactions to
another vertex with the same structure for another tetrahedron. The process is replicated and
this kind of lattice we call the asymmetric Ising–Heisenberg chain. We have studied the
ground-state phase diagram for this kind of model. In particular, we consider two situations in
the Heisenberg-type interaction: (i) the asymmetric tetrahedral spin-(1/2, 1/2) Ising-XYZ chain
and (ii) the asymmetric tetrahedral spin-(1/2, 1) Ising-XXZ chain, where we have found a rich
phase diagram and a number of multicritical points. Additionally we have also studied their
thermodynamical properties and the correlation function, using the decorated transformation.
We have mapped the asymmetric tetrahedral Ising–Heisenberg chain in an effective Ising chain,
and we have also concluded that it is possible to evaluate the partition function including a
longitudinal external magnetic field.

1. Introduction

Low-dimensional systems based on magnetic material have
attracted considerable attention lately in a number of subjects
such as condensed matter physics, material science and
inorganic chemistry. In these particular areas quantum
ferrimagnetic chains (QFC) were discussed, due to that they
exhibit a relevant combination of ferromagnetic (F) and
antiferromagnetic (AF) states. Experimental synthesis of
the compound Cu(3-Clpy)2(N3)2 [1], with Clpy indicating
chloropyridine, had been investigated. This compound could
be mapped into a spin-1/2 tetramer chain with F–F–AF–
AF bond alternation [2]. Recently diamond-type chain
structures have been intensively investigated theoretically and
experimentally [3]. The natural candidates to describe these
kinds of materials are the quantum anisotropic Heisenberg
models or even Ising-type models. Certainly the rigorous
mapping of those compounds into Heisenberg-type models
could produce very complex systems which usually have a
non-exact solution. However, some particular cases of models
could become exactly solvable, such as the Ising–Heisenberg
model considered by Jascur and Strecka [4], see also a more
detailed discussion considered by Canova et al [5]. The method
used to solve this kind of model is the historical work of
Fisher [6] on the decorated transformation method, proposed

in the 1950s. The improvement of this method is discussed
in [7]. Many other quasi-unidimensional Ising-type models
were solved using this method [8, 9].

Recently, theoretical investigation of strongly geometrical
frustrated materials [10] have been performed, particularly
focused on the diamond chain structure, using several
numerical approaches [11, 12]. These theoretical results
could enhance the other experimental realizations provided by
polymeric compounds such as Cu2OSO4 [13] and M3(OH)2

(with M = Ni, Co, Mn) [14, 15]. Other quasi-unidimensional
Heisenberg models were studied using numerical results such
as discussed in references [12, 16] and some analytical series
expansions have also been performed [17] for similar systems.

The aim of this work is to present the frustrated properties
of the asymmetric tetrahedron Ising–Heisenberg (ATIH) chain.
This model can be solved exactly by mapping for an effective
Ising chain with spins 1/2 or 1 using the method presented by
Fisher [6]. This work is organized as follows. In section 2, we
present the ATIH chain, considering the Heisenberg interaction
with spins 1/2 and 1. In section 3, we discuss the phase
diagram at zero temperature showing a rich phase diagram and
several critical points, for the spin-(1/2, 1/2) Ising-XYZ chain
and spin-(1, 1/2) Ising-XXZ chain. In section 4, we discuss
the thermodynamics properties for the Ising–Heisenberg chain
with Ising spins s = 1/2 or 1 and Heisenberg interaction spins
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Figure 1. The schematic representation of the coupled asymmetric
tetrahedral Ising–Heisenberg chain. All edges (dashed line) of the
tetrahedron are represented by the Ising interaction vertex except for
one (solid line) which is represented by the Heisenberg interaction
edge.

S = 1/2 or 1. We also considered the correlation function
using the decorated transformation method [6]. Finally in
section 5 we present our conclusions.

2. The model

The asymmetric tetrahedral Ising–Heisenberg (ATIH) chain
is composed of all edges of a tetrahedron (dashed line in
figure 1) represented by an Ising-type interaction except for
one, which is represented by a Heisenberg-type interaction
(solid line in figure 1), which can also be viewed as an Ising–
Heisenberg diamond chain. To obtain the ATIH chain we
coupled the vertex composed only by the Ising-type interaction
edge, which we call from now on just the Ising interaction
vertex, and connected it to another Ising interaction vertex
of another tetrahedron. On the other hand, the asymmetric
edge of the tetrahedron is represented by a Heisenberg type
interaction, which we simply call the Heisenberg interaction
edge (interaction between sites a, b in figure 1).

The schematic representation of the ATIH model is given
in figure 1. The Hamiltonian for the ATIH chain discussed
above could be written by the following expression:

H =
∑

i

Hi,i+1 =
∑

i

[
J

(
Sz

a,i + Sz
b,i

) (
sc,i + sc,i+1

)

+ Jsc,i sc,i+1 + H XYZ
i

]
(1)

with sc,i being the spin of the Ising interaction vertex, where
J is the interaction parameter. The last term included in
equation (1) corresponds to the Heisenberg interaction edge,
which is given by

H XYZ
i = Jx Sx

a,i Sx
b,i + Jy Sy

a,i Sy
b,i + Jz Sz

a,i S
z
b,i , (2)

with Sν
i being the spin matrices with ν = x, y, z and Jν are

their interaction parameters among sites a and b. We can
also include the longitudinal external magnetic field in the
Hamiltonian (1), which is

Hm =
∑

i

[
h0

2

(
sc,i + sc,i+1

) + h
(
Sz

a,i + Sz
b,i

)]
, (3)

where h0 is an external magnetic field acting on spin sc ,
whereas h is an external magnetic field acting on Sz

a and Sz
b .

Note that we are considering different external magnetic fields
because we assume that the gyromagnetic factor acting on sc

could be different from that gyromagnetic factor acting on Sz
a

and Sz
b , which we report as h0 = gh with g being the relative

gyromagnetic factor. Equation (1) is a symmetric Hamiltonian
in relation to the exchange sc,i ↔ sc,i+1 and Sz

a,i ↔ Sz
b,i . On

the other hand, we note that the Hamiltonian (1) also has an
internal spin symmetry H (sc,i , sc,i+1) = H (−sc,i,−sc,i+1).

2.1. The XYZ interaction edge with spin-1/2

To perform the partial summation over a decorated site, we
need to diagonalize the XYZ interaction edge Hamiltonian (2).
To evaluate this, we introduce the notations J+ = Jx + Jy

and J− = Jx − Jy . For the spin S = 1/2, we obtain the
diagonalized Hamiltonian:

Hi,i+1 = diag
(
λ

(1)
+ , λ

(2)
+ , λ

(2)
− , λ

(1)
−

)
, (4)

where diag( ) represents diagonal elements of the Hamilto-
nian (1), and conveniently we use for simplicity the notation
sc = sc,i and s ′

c = sc,i+1. Thus the eigenvalues are given by

λ
(1)
± = γ + 1

4 Jz ± 1
4

√
16α2 + J 2−,

λ
(2)
± = γ − 1

4 Jz ± 1
4 J+,

(5)

with

α ≡ α(sc, s ′
c) = J

(
sc

z + s ′
c

z) + h, (6)

γ ≡ γ (sc, s ′
c) = Jsc

zs′
c

z + h0

2

(
sc

z + s ′
c

z)
, (7)

where α(sc, s ′
c) and γ (sc, s ′

c) are dependent on the spins sc and
s′

c. Thus we can write them from now on just as α and γ ,
respectively. Each eigenvalue is given by equation (5) which
depends on sc and s ′

c. Then we have 16 eigenvalues.
After diagonalizing the Hamiltonian function we get the

corresponding set of eigenvectors also. Thus the new basis is
given by

|v(+)
1 (sc, s ′

c)〉 = 1√
1 + e2

1

(e1| + +〉 + | − −〉),

|v(−)
1 (sc, s ′

c)〉 = 1√
1 + e2

2

(e2| + +〉 + | − −〉),
(8)

|v(+)

2 〉 = 1√
2

(|+−〉 + |−+〉) ,

|v(−)
2 〉 = 1√

2
(− |+−〉 + |−+〉) ,

(9)

where the factors e1, e2 depend on spins sc and s ′
c which are

given by the following:

e1 ≡ e1(sc, s ′
c) =

√
16α2 + J 2− + 4α

J−
,

e2 ≡ e2(sc, s ′
c) =

−
√

16α2 + J 2− + 4α

J−
,

(10)

2
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where the normalized eigenvectors |v(±)

1 (sc, s′
c)〉 and |v(±)

2 〉
belonging to the eigenvalues λ

(±)
1 and λ

(±)
2 are given by (5).

We also remark that the eigenvectors |v(±)
2 〉 are independent of

the spins sc and s ′
c or we can say it is fourfold-degenerated.

At this point we would like to comment on the
relationships of the e1(sc, s ′

c) and e2(sc, s′
c) factors. From (10),

it is not difficult to note that these factors transform one
eigenvector of equation (8) into the other one, when we
exchange the following values:

⎧
⎪⎪⎨

⎪⎪⎩

sc → −sc

s′
c → −s′

c
J− → −J−
h → −h

⎫
⎪⎪⎬

⎪⎪⎭
�⇒ |v(+)

1 (sc, s ′
c)〉 → |v(−)

1 (sc, s ′
c)〉,

(11)

This property could be valid in a more general situation, even
in the presence of an external magnetic field. However, it is
important to point out that the eigenvalues of equation (5) does
not have a similar transformation. The eigenvalues λ

(1)
+ will

always be at higher energy levels than the eigenfunction λ
(1)
− .

In the case of null magnetic field (h = 0, h0 = 0) we have
these coefficients given by

e1 (±,∓) = −e2 (±,∓) = 1, (12)

e1 (±,±) =
√

16J 2 + J 2− ± 4J

J−
,

e2 (±,±) =
−

√
16J 2 + J 2− ± 4J

J−
.

(13)

These properties will be useful when we discuss the phase
diagram properties.

2.2. The XXZ interaction edge with spin-1

Now we can consider the XXZ interaction among sites a
and b (see figure 1), with the spin S = 1 case. We
diagonalize the Hamiltonian analogous to the previous case.
After diagonalizing, the Hamiltonian depends only on sc and
s′

c:

Hi,i+1 = diag
(
λ

(1)
+ , λ

(2)
+ , λ

(3)
+ , λ

(4)
+ , λ(5), λ

(4)
− , λ

(3)
− , λ

(2)
− , λ

(1)
−

)
,

(14)
where diag( ) represents diagonal elements of the Hamilto-
nian (1), whereas the eigenvalues are given by

λ
(1)
± = ±2α + γ + Jz, (15)

λ
(2)
± = ±α + γ + 1

2 J+, (16)

λ
(3)
± = ±α + γ − 1

2 J+, (17)

λ
(4)
± = γ − 1

2 Jz ± 1
2

√
J 2

z + 2J 2+, (18)

λ(5) = γ − Jz, (19)

where α and γ were already defined by equations (6) and (7).
Now for a complete analysis of the ATIH model, we shall

turn our attention to study the XXZ interaction edge for the
decorated spin-1. In this situation we have nine eigenvectors
after diagonalizing the Hamiltonian, corresponding to the

eigenvalues (15)–(19). Thus the normalized eigenvectors are

|u+
1 〉 = |1, 1〉, |u−

1 〉,= | − 1,−1〉, (20)

|u+
2 〉 = 1√

2
(|1, 0〉 + |0, 1〉) ,

|u−
2 〉 = 1√

2
(|0,−1〉 + | − 1, 0〉) ,

(21)

|u+
3 〉 = 1√

2
(−|1, 0〉 + |0, 1〉) ,

|u−
3 〉 = 1√

2
(−|0,−1〉 + | − 1, 0〉) ,

(22)

|u+
4 〉 = 1√

2 + f 2
1

(|1,−1〉 + | − 1, 1〉 + f1|0, 0〉) ,

|u−
4 〉 = 1√

2 + f 2
2

(|1,−1〉 + | − 1, 1〉 + f2|0, 0〉) ,

(23)

|u5〉 = 1√
2

(−|1,−1〉 + | − 1, 1〉) , (24)

where f1 and f2 are respectively given by

f1 = Jz + √
J 2

z + 8J 2
x

2Jx
, f2 = Jz − √

J 2
z + 8J 2

x

2Jx
, (25)

at which point we have a similar situation as was pointed out
in equation (11), i.e. these factors transform as

Jz → −Jz, Jx → −Jx then |u+
4 〉 → |u−

4 〉. (26)

Again this conclusion is valid even when an external magnetic
field is included.

After rewritten the Heisenberg interaction edge Hamilto-
nian in the diagonal form we are able to discuss the phase dia-
gram for the whole quasi-unidimensional chain for both cases
XYZ interaction edge with spin-1/2 and XXZ interaction edge
with spin-1.

3. The phase diagrams of the ATIH chain

3.1. The asymmetric tetrahedral spin-(1/2, 1/2) Ising-XYZ
chain

To study the phase diagram of the asymmetric tetrahedral spin-
(1/2, 1/2) Ising-XYZ chain we use the diagonalized version of
the Hamiltonian presented in previous section 2.1. We would
like to note that, for the presently considered model, we have
a set of 16 different state vectors. Nevertheless, when the
translation and the global spin inversion symmetry are taken
into account, we find that only eight state vectors have different
phases.

As we mentioned above some state vectors are physically
equivalent, for example, the state vectors |v(+)

1 (+,+)〉 and
|v(+)

1 (−,−)〉 correspond to the same state when we consider
the global spin inversion. Once the eigenvalues satisfy the
relations λ

(1)
± (sc, s′

c) = λ
(1)
± (−sc,−s′

c) and λ
(2)
± (sc, s′

c) =
λ

(2)
± (−sc,−s′

c), we restrict the eigenvectors to only eight

3
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Figure 2. Schematic representation of the phase diagram. (a) For the ATIH chain using the new parameters x and y defined by (35). (b) For
the ATIH chain using the new parameters x and y defined by (36).

relevant energy states. So we obtain the following eight states
vectors for the asymmetric tetrahedral spin-(1/2, 1/2) Ising-
XYZ chain:

|QFOI〉 =
N∏

k=1

∣∣∣+, v
(+)
1 (+,+)

〉

k
,

m0 = 0.5, m1 = 1

2

(
e2

1 − 1

e2
1 + 1

)
(27)

|QFOII〉 =
N∏

k=1

∣∣∣+, v
(−)

1 (+,+)

〉

k
,

m0 = 0.5, m1 = 1

2

(
e2

2 − 1

e2
2 + 1

)
(28)

|QFOIII〉 =
N∏

k=1

∣∣∣+, v
(+)

2

〉

k
,

m0 = 0.5, m1 = 0, (29)

|QFOIV〉 =
N∏

k=1

∣∣∣+, v
(−)

2

〉

k
,

m0 = 0.5, m1 = 0, (30)

|FRUI〉 =
N/2∏

k=1

∣∣∣+, v
(+)
1 (+,−) ,−, v

(+)
1 (+,−)

〉

k
,

m0 = 0, m1 = 0, (31)

|FRUII〉 =
N/2∏

k=1

∣∣∣+, v
(−)

1 (+,−) ,−, v
(−)

1 (+,−)

〉

k
,

m0 = 0, m1 = 0, (32)

|FRUIII〉 =
N/2∏

k=1

∣∣∣+, v
(+)
2 ,−, v

(+)
2

〉

k
,

m0 = 0, m1 = 0, (33)

|FRUIV〉 =
N/2∏

k=1

∣∣∣+, v
(−)

2 ,−, v
(−)

2

〉

k
,

m0 = 0, m1 = 0, (34)

where the first element in the product corresponds to the
Ising interaction taking two possible values (±1), and the next

element represents the XYZ interaction edge considered in the
previous section. All products are carried out over all spin sites.
In these relations the single Ising site magnetization m0 is given
for spin-1/2 and m1 is the single Heisenberg magnetization
for the a and b sites (Heisenberg interaction edge). The first
two states (27) and (28) are new states which arise when we
consider the total Ising-XYZ case and their magnetization m1

depends on the parameters J , J− and h. These states we
will call in general ‘quantum ferromagnetic’ (QFO) states of
type I and II, respectively, which are not degenerated and
from (8) it is possible to see that the probability of the spin
alignment, defined by the functions e1(sc, s′

c) and e2(sc, s′
c)

are not equivalent for the up and down orientations. It is
worth remarking that this ‘quantum ferromagnetic’ state could
become a quantum ferrimagnetic state when m1 or m2 is
negative. The energy states of (29) and (30) also have the
structure of the first two states but now the probability of
the up and down orientations are equivalent: these states
are non-degenerate and we can also call these states QFO
states of type III and IV, respectively. The states (31)–(34)
display four frustrated (FRU) states of types I, II, III and IV,
respectively, and are non-degenerate. For these states we use an
extended modified unitary cell necessary for the identification
of equivalent vector states.

In figure 2, we show the ground-state phase diagram
for the system in the absence of the magnetic field (h =
h0 = 0). In figure 2(a) let us to consider the following
reparameterization for the interaction parameters, without
losing any physical generality:

J = sin(x), Jz = sin(y),

J+ = 4 cos(y), J− = 4 cos(x).
(35)

Here we represent the interaction parameter by means
of two new parameters x and y. For the first two
states (equations (27) and (28)) we find that the Heisenberg
interaction edge magnetization takes the value m1 = sin(x)/2.
Thus for x = 0, π we have m1 = 0, and for x = π/2 we
obtain m1 = 1/2.

4
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Figure 3. Schematic representation of the phase diagram for the ATIH chain, where we consider γ = 0 and J− = 0. In (a) we display a
ferromagnetic (FM) and ferrimagnetic (FRI) state. However, the quantum ferromagnetic (QFO) and the frustrated (FRU) phases are also
present. In (b), we fixed the condition Jx = Jy = Jz obtaining only three states’ phase energy. The FM, FRI and FRU sectors converges into
one tricritical point (π, π/2).

Certainly, by using this new parameter we restrict the
values of interaction parameters as follows: |J | � 1,
|Jz| � 1 and |J±| � 4. In this limited region we have
competing interaction parameters, leading to several ground-
state energies. Out of this region there are no new phases.

It is possible to see that, in this phase diagram, we have
five tricritical points where three states converge, and two four-
critical points where four states converge. In the last case we
have that these points are located in the vertical line x = π . For
this position the value obtained from (35) is J = 0, Jz = 0.8,
i.e. in this region the system has pure Heisenberg interaction
for a, b sites, and in general, this region is defined by the
line where a continuous phase transition occurs. We are able
to calculate the other interaction parameters corresponding to
these two critical points (x, y). Thus we have that for the
points (π, 0.9273) and (π, 2.2143) the interaction parameters
take the values Jx = −1.7, Jy = 2.3 and Jx = −3.2,
Jy = 0.8, respectively. In principle we must plot in figure 2(a)
the parameters x and y in the interval [0, 2π]. But in order to
highlight the rich region in the interval [0, π], we considered
it only up to 3π/2 for the x parameter, since we have the
continuation of the states QFOIII, QFOII and QFOIV. On the
other hand, in the y axis we have also repeated states (FRUI,
FRUII, FRUIV and QFOII) which are also present in the interval
considered in figure 2(a). We will use the same considerations
in the next figures.

In the region where the axis takes the values x < π , we
have that the interaction parameter J > 0, i.e. it is positive
defined, and for the region x > π we obtain a negative value
for the parameter J < 0. In general, negative values for
interaction parameters favor the anti-parallel alignment for the
spin-ordered system. Thus we define the type of phase-ordered
state by whatever is the FRU or QFO state (left and right side
at the axis x = π in the diagram). At this stage it is necessary
to point out that the phase state QFOII appears in both sectors
(gray sector of figure 2(a)). Basically this occurs by the fact
that the constant e2(sc, s ′

c) is different from zero. As will be
mentioned below, if the constant e2(sc, s ′

c) comes close to zero,
the region QFOII on the left-hand side disappears.

The other five tricritical points can be found by a
simple substitution: for example, the point (π/2, π/2) is
where the phase states FRUIII, FRUIV and QFOII coexist.
Other tricritical points are (0.9273, 1.4679), (0.9273, 1.6735),
(2.2143, 1.4679) and (2.2143, 1.6735).

If we impose the condition Jx = Jy , i.e. for the XXZ
model, the eight states reduce to seven, six of them will appear
in the phase diagram. This is possible because in the limit
(J− → 0) the constants e1(sc, s′

c) and e2(sc, s′
c) become 1 and

0, respectively, giving the states FRUI → FRUII as equivalent.
We give in figure 2(b) the ground-state energy for regions

resulting from the substitution J− = 0 and where six phases
for the ground-state energy are shown. It is easy to see
that the states vectors become |v(+)

1 (sc, s′
c)〉 → |++〉 and

|v(−)
1 (sc, s ′

c)〉 → |−−〉. For convenience we use the following
realization:

J = − sin(x), Jx = 2 cos(y), Jz = − sin(y),

(36)
and now obtain a ferromagnetic (FM) and ferrimagnetic (FRI)
state. It is possible to see that the x = π axis is still
present in these phase configurations. On this line three critical
points are shown where four ground states converge. The
phase diagram displayed in figure 2 shows several states due
to the presence of the Jsc,i sc,i+1 interaction, i.e. the γ (sc, s′

c)

term (with h0 = 0) given by (7) allows us to consider this
interaction. In [5] the term Jsc,i sc,i+1 was considered null.
If we put γ (sc, s′

c) = 0 and at the same time impose the
equality of some of the interaction parameters, we obtain a very
simple phase diagram. This is graphically displayed in figure 3.
Figure 3(a) shows that, in the case γ (sc, s ′

c) = 0, Jx = Jy ,
some states are degenerate, so we identify QFOIV and FRUIV

as having the same energy. The same occurs with the QFOIII

and FRUIII states. The FM and FRI states also appear in this
diagram. Figure 3(b) shows that, for the case γ (sc, s ′

c) = 0,
Jx = Jy = Jz , we obtain the simpler configuration with three
phases: the FM, FRI and FRU states. Only one tricritical point
where these states converges is present in (π, π/2). At this

5
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Figure 4. Phase diagram for the ATIH with spin-(1/2, 1) chain. In (a) we have obtained, in a more general case, seven phase diagrams, using
the parameters given by equation (37). In (b) we have obtained it, restricting the interaction parameters to J = Jz = sin(x),
Jx = Jy = 2 sin(y), given by equation (46).

stage we would like to remark that a very similar ground-state
configuration was obtained in [5]. However, the realizations
used in our work (35) and (36) are different from those used
in [5], because we did not include the external magnetic field.

3.2. The asymmetric tetrahedral spin-(1/2,1) Ising-XXZ chain

To obtain all states we need to consider the coupling of the
decorated vector states (20)–(24) with the Ising interaction
vertex with spin-1/2. This enables us to write down the total
vector states of the system. We will restrict the conditions over
the interaction parameters without losing generality, using the
following values for the interaction parameters:

J = −Jz = sin(x), Jx = 2 sin(y), (37)

in the following we also restrict the system to the case when
the external magnetic field is absent (h0 = 0, h = 0). From
all possible 24 ground-state energies, which can be obtained
from the system, only 15 eigenvalues have different values. In
this situation the ground-state eigenvectors for the asymmetric
spin-(1/2,1) Ising-XXZ chain, which would appear in the
phase diagrams, are given by

|FM〉 =
N∏

k=1

∣∣∣+, u(+)

1

〉

k
, m0 = 0.5, m1 = 0.5, (38)

|FRI〉 =
N∏

k=1

∣∣∣−, u(+)

1

〉

k
, m0 = −0.5, m1 = 0.5,

(39)

|QFOI〉 =
N∏

k=1

∣∣∣+, u(+)

2

〉

k
, m0 = 0.5, m1 = 0.5,

(40)

|QFOII〉 =
N∏

k=1

∣∣∣+, u(+)

3

〉

k
, m0 = 0.5, m1 = 0.5,

(41)

|QFOIII〉 =
N∏

k=1

∣∣∣+, u(−)

4

〉

k
, m0 = 0.5, m1 = 0,

(42)

|QFII〉 =
N∏

k=1

∣∣∣−, u(+)

2

〉

k
, m0 = −0.5, m1 = 0.5,

(43)

|QFIII〉 =
N∏

k=1

∣∣∣−, u(+)

3

〉

k
, m0 = −0.5, m1 = 0.5,

(44)

|FRU〉 =
N/2∏

k=1

∣∣∣+, u(−)

4 ,−u(−)

4

〉

k
, m0 = 0 m1 = 0,

(45)
where the first element in each product corresponds to the
Ising interaction taking two possible values (±1), and the next
element represents the XXZ interaction edge considered in the
previous section 2.2. Equation (38) represents a ferromagnetic
(FM) state and equation (39) indicates a ferrimagnetic (FRI)
state, whereas equations (40)–(42) correspond to quantum
ferromagnetic (QFO) states of type I, II and III, respectively.
We also have two types of quantum ferrimagnetic (QFI) state
given by equations (43) and (44). Finally equation (45)
represents a frustrated (FRU) state. All these states given
by (38)–(45) are displayed in the phase diagram presented in
figure 4(a). It is remarkable that the line x = π divides the
QFO states from the other ones. Therefore in this case we have
a seven-critical point in (π, π ) where all states converge.

In order to display the first vector state (38), which was
not present in figure 4(a), we change the restriction over the
interaction parameters and fixed it as follows:

J = Jz = sin(x), Jx = 2 sin(y). (46)

The phase diagram is given in figure 4(b), where the FM state
appears. The other states were already presented in figure 4(a).

Finally it is quite interesting to mention that the state
given by equation (38) also appears when the next-nearest
interaction parameter considered is null, such as considered
in [5], i.e. when γ = 0, and the restriction is extended over
the decorated interaction parameters. For example, if we put

J = 1
5 sin(x), Jx = Jy = Jz = 4 sin(y), γ = 0,

(47)
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Figure 5. Schematic representation, for the connectors with spin-1/2
and decorated Heisenberg spin-1, of the phase diagram for the
decorated XXZ spin-1 model showing the presence of the FM state.
We fixed the parameter interaction
Jx = Jy = Jz = 4 sin(y), J = 1/5 sin(x) and γ = 0, obtaining only
three states. The FM and FRI are non-degenerate while the QFO and
FRU are twofold-degenerate. These sectors converge into one
tricritical point (π,π).

we obtain the simpler phase diagram with four states as
displayed in figure 5. The FM and the FRI states are separated
by the x = π line and they end up in QFOIII and FRUI.
A similar phase diagram was presented in the work [5] with
zero external magnetic field and zero next-nearest interaction
parameter. In the work [5] they also consider an external
magnetic field but with zero next-nearest interaction parameter
where similar phase diagrams were obtained, as displayed in
figures 4 and 5(a). So we conclude that the inclusion of the
(sc, sc) interaction enables us to investigate a rich number of
states even in the absence of an external magnetic field. Both
restrictions (46), (47) give the value for the ground-state energy
E0 = 0.

4. The ATIH chain thermodynamics

Thermodynamics properties could be studied using the known
decorated transformation spin proposed in [6, 7]. Let us write
the partition function as follows:

Z =
∑

{sc}

N∏

i=1

Tr{S}e−βHi,i+1 =
∑

{sc}

N∏

i=1

w(sc, s′
c), (48)

where N is the number of decorated bounds, whereas Tr{S}
stands for the trace of the central decorated system or
Heisenberg interaction edge (in our case), while by w(sc, s′

c)

we represent the Boltzmann weight. One should notice that
the transformation (48) is rather general, since it is valid for
arbitrary spin values contained in the decorated site. The set
{sc} represents the Ising interaction vertex and would take any
spin value too. In this section we study the Ising–Heisenberg
chain where the Ising interaction vertex takes the spin values
S = 1/2 or 1.

The ATIH chain partition function can be expressed as

Z = f NZ0, (49)

where Z0 is the partition function of the effective Ising chain
with arbitrary spin-S, whereas f means a constant for the
effective Ising chain.

When decorated Heisenberg interaction edge sites are
occupied by spin-1/2 or 1, it is necessary to perform the partial
trace over all those decorated spin sites.

4.1. The Ising interaction vertex with spin-1/2

In order to map the ATIH chain into an effective Ising chain,
let us consider the Ising interaction vertex with spin-1/2. For
this case the associated Boltzmann weight function w(sc, s′

c)

has the form

w(sc, s′
c) = eλ

(1)
+ + eλ

(2)
+ + eλ

(2)
− + eλ

(1)
− , (50)

where λ
(1)
± and λ

(2)
± are given by equation (5) for S = 1/2

(spin of the decorated sites) whereas the associated Boltzmann
weight for spin S = 1 could be obtained using equations (15)–
(19). Then the ATIH chain model considered here is given by

w(sc, s′
c) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2e−β(γ+ 1
4 Jz) cosh

(
β

1

4

√
16α2 + J 2−)

+ 2e−β(γ− 1
4 Jz) cosh(β 1

4 J+),

S = 1/2

e−βγ

(
eβ Jz + 2e

β

2 Jz cosh

(
β

2

√
J 2

z + 2J 2+

)

+ 4 cosh

(
β

2
J+

)
cosh(βα)

+ 2e−β Jz cosh(β2α)

)
, S = 1.

(51)

The effective Ising chain partition function is represented
by their Boltzmann weight function w̃(sc, s ′

c) which is

w̃
(
sc, s′

c

) = f exp
{−β

(
K scs′

c + B(sc + s ′
c)

)}
. (52)

Using a decorated transformation, we obtain the new
parameters for the effective Ising chain:

f 2 = w
(

1
2 ,

−1
2

)√
w

(
1
2 , 1

2

)
w

(−1
2 , −1

2

)
,

−βK = 4 ln

(
w( 1

2 , 1
2 )w(−1

2 , −1
2 )

w( 1
2 , −1

2 )2

)
,

−β B = 1

2
ln

(
w( 1

2 , 1
2 )

w(−1
2 , −1

2 )

)
,

(53)

where the new effective parameters of the Ising chain can
be expressed as a function of the parameter of the original
Hamiltonian. Thus f is just a constant, whereas K means a
coupling parameter and finally B corresponds to the external
magnetic field.

The expression for the partition function of the ATIH chain
results in

Z = f NZ0 = f N
∑

{sc}

N∏

i

e−β(K scs ′
c+B(sc+s ′

c)). (54)

7
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Using equation (54) we are able to map the asymmetric
tetrahedral spin-(1/2, S) Ising–Heisenberg chain into an
effective spin-1/2 Ising chain, where the spin-S of the
Heisenberg interaction edge could be 1/2 or 1.

4.2. The Ising interaction vertex with spin-1

Another case that we consider will be the Ising interaction
vertex with spin-1. Thus the asymmetric tetrahedral spin (1, S)
Ising–Heisenberg chain will be mapped into an effective spin-
1 chain. Similar to the previous case we obtain the following
Boltzmann weight expressed as follows:

w̃(sc, s ′
c) = f exp{−β(K1scs′

c + B(sc + s ′
c) + D(sc

2 + sc
2)

+ E(sc
2s′

c + scs′
c

2
) + K2sc

2s′
c

2
)}, (55)

where K1, K2, B , D and E are the parameters to be
determined.

The new parameters of equation (55) can be expressed
using the associated Boltzmann weight, which is written as

f = w(0, 0), (56)

−βK1 = 1

4
ln

(
w(1, 1)w(−1,−1)

w(0, 0)2

)
, (57)

−β B = 1

2
ln

(
w(1, 0)

w(−1, 0)

)
, (58)

−β D = 1

2
ln

(
w(1, 0)w (−1, 0)

w(0, 0)2

)
, (59)

−β E = 1

4
ln

(
w (1, 1) w(1, 0)2

w (−1,−1)w(−1, 0)2

)
, (60)

−βK2 = 1

4
ln

(
w (1, 1, ) w (−1,−1) w(0, 0)2

w (1, 0)2 w (−1, 0)2

)
. (61)

Similar to the previous case f means just a constant in the
new effective Hamiltonian, while K1 is the coupling parameter,
B corresponds to the external magnetic field, the parameter
D represents the single-ion anisotropy, E corresponds to the
interaction of the quadratic and linear interactions among the
nearest spins and finally K2 is the parameter of the biquadratic
interaction.

In this case if we consider a null magnetic field, we have
w(1, 1) = w(−1,−1) and w(1, 0) = w(−1, 0). Under this
condition equations (58) and (60) lead to B = 0 and E = 0,
respectively. Then the Boltzmann weight function w(sc, s′

c)

defined by equation (55) reduces the following relation:

w̃(sc, s ′
c) = f exp

(
−β

(
K1scs′

c + D(sc
2 + s′

c
2
)+ K2sc

2s′
c

2))
.

(62)
Finally we have concluded that our mapping of the

asymmetric tetrahedral spin-(1, S) Ising–Heisenberg chain can
be expressed as an effective spin-1 Ising chain, where, as
before, the spin-S of the Heisenberg interaction edge could be
1/2 or 1.

4.3. The ATIH chain correlation functions

We can notice that the partition function of the ATIH chain
obtained above, by mapping into the Ising spin chain, is
limited. We cannot obtain directly the correlation function
because the mapped Ising chain does not depend on the
decorated spin. Then we can use the method presented
by Fisher [6], where the correlation function for the ATIH
chain can be obtained using the decoration transformation in
a similar way as was performed for the partition function,
assuming we known the correlation function of the effective
spin-1 Ising chain.

Using the definition given in [6], we have

〈
Si sk1 sk2 · · ·〉 = 1

Z
∑

{sk j }

∑

Si

Si sk1 sk2 · · · e−βH , (63)

where Si represents the decorated spin at site i and sk j are any
spins of the systems along the chain. They could be either
decorated spins S or undecorated spins sc, with Z as the total
partition function of the system and H the total Hamiltonian.
It is possible to split the above relation in two parts, one being
independent of the spin Si and the other one containing the Si

dependence. Thus we write down the total Hamiltonian (1) as

H = H0
(
Si , sc,1, sc,2, . . .

) + Hn
(
sc,1, sc,2, . . .

) ≡ H0 + Hn,

(64)
where the H0 contains the dependence of the spins
(Si , sc,1, sc,2, . . .) and Hn contains only combinations of the
spins (sc,1, sc,2, . . .). Actually, in the case when [H0, Hn] = 0,
we have

〈
Si sk1 sk2 · · ·〉 = 1

Z
∑

{sk j }
sk1 sk2 · · · e−βHn �(sc,i sc,i+1), (65)

and, as was pointed out by Fisher [6], it is possible to prove
that �(sc,i sc,i+1) can be represented as

�(sc,i sc,i+1) =
∑

Si

Si e
−βH0 . (66)

We give some values for the correlation functions of the
asymmetric tetrahedral Ising–Heisenberg model in the case
when the Ising interaction vertex with spin sc equal to 1/2 or 1
and the decorated spin could be equal to 1/2 or 1. In the case
of spin sc = 1/2, it is possible to obtain an equivalent form [6]
for the right-hand side of (66):

�(sc,i , sc, j ) = (q0 + q0,1(sc,i + sc, j ) + q1,1sc,i sc, j )
∑

Si

e−βH0 .

(67)
As an example, let us apply to evaluate the following

correlation, with arbitrary sites i and j , instead of performing
only among next-nearest sites [5], considering Sz

a could be
spin-1/2 or 1. Thus the correlation is

〈Sz
a,i sc, j 〉 = q0〈sc, j 〉 + q0,1

(〈sc,i sc, j 〉 + 〈sc,i+1sc, j 〉
)

+ q1,1〈sc,i sc,i+1sc, j 〉 (68)

where the coefficients q’s can be obtained solving the system
equations (65) and (68), from where we verify their solution

8
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is given as a derivative of the parameters obtained in (53) with
respect to the magnetic field h, which is

q0 = − 1

2β

∂

∂h
ln f, q1,0 = 1

2

∂ B

∂h
,

and q1,1 = 1

8

∂K

∂h
.

(69)

Then it is possible to write a combination of the correlation
function of the effective Ising chain with up to three-body spin
correlations. This correlation is given explicitly as follows:

〈sc,i sc, j 〉 = 〈sc〉2 + (
1 − 〈sc〉2

)
e(i− j)/ξ (70)

〈sc,i sc,i+1sc, j 〉 = 〈sc〉3 + 〈sc〉
(
1 − 〈sc〉2

)

× (
e(i− j)/ξ + e−1/ξ (1 + e( j−i)/ξ )

)
(71)

where ξ is the correlation length of the effective (standard)
Ising chain [18].

The autocorrelation function of the 〈(Sz
a)

2〉 when we
consider the Ising interaction vertex sc = 1/2 simply becomes
a constant equal to 1/4, but when we consider spin-1, this
expression becomes non-trivial. Analogous to the previous
correlation discussed, the general expression can then be

〈(
Sz

a,i

)2
〉
= Q0 + 2Q1,0

〈
sc,i

〉 + Q1,1
〈
sc,i , sc,i+1

〉
. (72)

Once again the coefficients Q’s can be obtained using the
following relation:

Q0 = 1
4

[
M( 1

2 ,
1
2 ) + M(− 1

2 ,− 1
2 ) + 2M( 1

2 ,− 1
2 )

]
, (73)

Q1,0 = 1
2

[
M( 1

2 ,
1
2 ) − M(− 1

2 ,− 1
2 )

]
, (74)

Q1,1 = M( 1
2 ,

1
2 ) + M(− 1

2 ,− 1
2 ) − 2M( 1

2 ,− 1
2 ), (75)

with

M(sc,i , sc,i+1) = 1

β

∂w(sc,i , sc,i+1)

∂ Jz
+ 1

2β2

∂2w(sc,i , sc,i+1)

∂h2
,

(76)
whereas w(sc,i , sc,i+1) was already defined in equation (51).
Other correlation functions like 〈Sν

a,i Sν′
b,i 〉, are null when ν �=

ν ′, whereas for ν = ν ′, the correlation function can be obtained
directly using the derivatives of the free energy instead of
using the previous iterative method such as the one performed
by Canova [5]. In particular we show the following nearest
correlation:

〈
Sz

a

〉 = − 1

β

∂ ln(Z)

∂h
(77)

〈
Sν

a,i Sν
b,i

〉 = − 1

β

∂ ln(Z)

∂ Jν

, with ν = {x, y, z}. (78)

We remark that the above conclusions are also valid even
for spin sc = 1. Similar analysis could be performed to
obtain the correlation function when sc = 1. In this case the
�(sc,i , sc,i+1) function will be defined as

�(sci , sc, j ) = {
q0 + q0,1(sc,i + sc, j ) + q1,1sc,i sc, j

+ q1,2(sc,i s
2
c, j + s2

c,i sc, j ) + q0,2(s
2
c,i + s2

c, j )

+ q2,2s2
c,i s

2
c, j

}
e−βH0 . (79)

Using this relation, together with the correlation function of
the effective Ising chain with spin-1, we can obtain other

correlations functions for sc = 1, using the same recipes as
above.

Alternatively we can obtain this kind of correlation using
the direct transfer matrix formalism such as performed in [19].
Meanwhile the advantage of this method could be a non-
iterative calculation.

5. Conclusions

The phase diagrams of the asymmetric tetrahedral Ising–
Heisenberg (ATIH) chain were studied for the case when the
Ising interaction vertex is spin-1/2. Firstly we considered
the XYZ interaction edge with spin-1/2, and null external
magnetic field (h = h0 = 0). The diagrams displayed in
figure 2(a) have shown seven states appearing in the model,
with five critical transition points (x, y), having three phase
states converging, and two critical transition points, where
four phase states converge. These states have shown their
quantum nature for the XYZ interaction edge (decorated sites),
for example, for the vector states (27) and (28) we see that
up and down orientations in the decorated sites have different
probabilities defined by the factors e1(sc, s′

c) and e2(sc, s ′
c).

We have also analyzed the particular case when J− = 0,
constructing the phase diagram and showing that FM and FRI
states appear (figure 2(b)). Other situations have also been
studied, in particular the case where γ = 0, Jx = Jy and for
the simpler configuration γ = 0, Jx = Jy = Jz (figure 3).
Secondly, when the XXZ interaction edge (decorated) spin is
1, we have also obtained a rich phase diagram for the ground-
state energy, even when an external magnetic field and the next-
nearest interaction are absent. These phase diagrams are shown
in figures 4 and 5. The x = π line appears to be the limit of
the QFO and the other states, so for the critical point (π, π ) the
energy takes the value E0 = 0. Some particular cases of our
results obtained here have been compared with those obtained
in [5].

We have noticed that, using a decorated Ising model
mapping transformation, initially given by Fisher [6], the
calculation of the partition function for the ATIH chain is
reduced to a closed expression of the Ising spin chain. We have
considered some particular cases to discuss the thermodynamic
properties, such as the Ising interaction vertex with spins-1/2
and 1, whereas the interaction edge could be XYZ with spin-
1/2 and XXZ with spin-1, respectively. The results for the
correlation function are presented generally for the situation
when we have the Ising interaction vertex with spins-1/2 or 1
and the Heisenberg interaction edge with spins-1/2 or 1. We
have observed that some correlation function could be obtained
using the derivative related to some parameter instead of using
the decorated transformation used in [5]. We also considered
a long range correlation function where we used the decorated
transformation to obtain the result.
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